A Remark on the Farthest Point Problem

A. P. BOSZNAY
L. Eötvös University, Department of Probability, H-1088 Budapest, Muzeum krt. 6-8, Hungary

Communicated by Oved Shisha
Received April 17, 1978

1. Introduction

Let $(X,\|\cdot\|)$ be a normed linear space and $\phi \neq K \subset X$ be a bounded set. Let us define the mapping $Q_{K}: X \rightarrow 2^{K}$ by

$$
Q_{K}(x)=\left\{y \in K ; \sup _{k \in K}\|x-k\|=\|x-y\|\right\}
$$

We call K a uniquely remotal (U.R.) set, if for all $x \in X Q_{K}(x)$ consists of exactly one element.

The following question seems to be unsolved: Are all (U.R.) sets singletons?

There are many cases in which this question can be answered affirmatively, such as for all finite-dimensional spaces [1]; for compact sets K [1]; for normcontinuous Q_{K} [2]; and for the Banach spaces c_{0} and $c[3]$. In this paper we prove that for every normed linear space $(X,\|\cdot\|)$ there exists a $|\cdot|$ norm on X, equivalent to $\|\cdot\|$, such that all U.R. sets in $(X, \mid \cdot \|)$ are singletons. The problem for the original norm remains unsolved.

2. Results

Theorem 1. Let $(X,|\cdot|)$ and $(Y,|\cdot|)$ be arbitrary real normed linear spaces with $\operatorname{dim} X>0, \operatorname{dim} Y>0$, and let $Z=X \times Y$ have the norm

$$
\|(x, y)\|=\max \{|x|,|y|\}
$$

Then all U.R. sets in $(Z,\|\cdot\|)$ are singletons.

Lemma. Let $p_{1}, p_{2} \in Z, p_{i}=\left(x_{i}, y_{i}\right)(i=1,2) ; Q_{K}\left(p_{j}\right)=Z_{j}=\left(a_{j}, b_{j}\right)$ $(j=1,2)$,

$$
\begin{equation*}
C_{1}=\left\|p_{1}-Q_{K}\left(p_{1}\right)\right\|=\left|X_{1}-a_{1}\right| \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{2}=\left\|p_{2}-Q_{K}\left(p_{2}\right)\right\|=\left|y_{2}-b_{2}\right| \tag{2}
\end{equation*}
$$

Then $a_{1}=a_{2}, b_{1}=b_{2}$.
Proof of the Lemma. Let us suppose that $C_{1} \geqslant C_{2}$, and set $\lambda=C_{1} / C_{2}$. Introducing the element

$$
p_{3}=\lambda p_{2}+(1-\lambda) Z_{2}
$$

we have

$$
\begin{equation*}
\left\|p_{3}-Z_{2}\right\|=\lambda C_{2}=C_{1} \tag{3}
\end{equation*}
$$

and

$$
\left\|p_{3}-p_{2}\right\|=(\lambda-1) C_{2}=C_{1}-C_{2}
$$

Using (2) and the definition of Q_{K},
$\left\|p_{3}-Q_{K}\left(p_{3}\right)\right\| \leqslant\left\|p_{3}-p_{2}\right\|+\left\|p_{2}-Q_{K}\left(p_{2}\right)\right\|=\left\|p_{3}-p_{2}\right\|+C_{2}=C_{1}$.
By (3), this implies $Q_{K}\left(p_{3}\right)=Z_{2}$. By (2) and the definition $p_{3}=\left(x_{3}, y_{3}\right)$,

$$
\left|y_{3}-b_{2}\right|=C_{1}
$$

Set

$$
p_{4}=\left(X_{1}, y_{3}\right)
$$

For arbitrary $Z \in K$, by (1) and (2),

$$
\left\|p_{4}-Z\right\| \leqslant \max \left(\left|X_{1}-a_{1}\right|,\left|y_{3}-b_{2}\right|\right)=C_{1} .
$$

At the same time

$$
\left\|p_{4}-z_{1}\right\| \geqslant\left|X_{1}-a_{1}\right|=C_{1},
$$

and

$$
\left\|p_{4}-z_{2}\right\| \geqslant\left|y_{3}-b_{2}\right|=C_{1}
$$

So we have $Q_{K}\left(p_{4}\right)=z_{1}$ and $Q_{K}\left(p_{4}\right)=z_{2}$.
As $Q_{K}\left(p_{4}\right)$ is a singleton $z_{1}=z_{2}$, and the lemma is proved.
Proof of Theorem 1. Suppose K is a U.R. set in $(Z,\|\cdot\|)$ which is not a singleton. First we show that there exist points p_{1}, p_{2} in Z and points z_{1}, z_{2}
in K such that $Q_{K}\left(p_{1}\right)=z_{1} \neq z_{2}=Q_{K}\left(p_{2}\right)$. Otherwise we would have $Q_{K}(z)=z$ for all $z \in K$, contradicting our assumption that K is not a singleton.

Using our lemma we can assume, without loss of generality, that

$$
\left\|p_{i}-z_{i}\right\|=\left|X_{i}-a_{i}\right| \quad(i=1,2) .
$$

If there were a point $p=(X, y)$ in Z with $Q_{K}(p)=(a, b)$ and

$$
\left\|p-Q_{K}(p)\right\|=|y-b|,
$$

then, by the lemma, $z_{1}=Q_{K}(p)=z_{2}$, contradicting the above. So we have

$$
\begin{equation*}
\left\|p-Q_{K}(p)\right\|=|X-a| \tag{4}
\end{equation*}
$$

whenever $p=(X, y), Q_{K}(p)=(a, b)$. But taking $p=(0, y)$ with $|y| \geqslant$ $3 \sup _{z \in K}\|z\|$, we have

$$
\left\|p-Q_{K}(p)\right\| \geqslant 2 \sup _{z \in K}\|z\|
$$

and

$$
|0-a| \leqslant \sup _{z \in K}\|z\|
$$

for all $(a, b) \in K$, contradicting (4). This proves Theorem 1.
Theorem 2. Let $(X,\|\cdot\|)$ be a real normed linear space. Then there exists a norm $|\cdot|$ on X, equivalent to $\|\cdot\|$, such that all U.R. sets in $(X,|\cdot|)$ are singletons.

Proof. If $\operatorname{dim} X=1$, our theorem is trivial.
If $\operatorname{dim} X \geqslant 2$, let $f \in(X,\|\cdot\|)^{*}, f \neq 0$. Then there exists $x^{*} \in X$ with $f\left(x^{*}\right) \neq 0$.

Set

$$
\begin{aligned}
M & =\left\{x-\frac{f(x)}{f\left(x^{*}\right)} x^{*} ; x \in X\right\}, \\
N & =\{c x ; c \in \mathbb{R}\} .
\end{aligned}
$$

Then M, N are closed linear subspaces of X, and

$$
M \oplus N=X .
$$

We have

$$
\begin{aligned}
\|x\| & \leqslant\left\|x-\frac{f(x)}{f\left(x^{*}\right)} x^{*}\right\|+\left\|\frac{f(x)}{f\left(x^{*}\right)} x^{*}\right\| \\
& \leqslant 2 \max \left\{\left\|x-\frac{f(x)}{f\left(x^{*}\right)} x^{*}\right\|,\left\|\frac{f(x)}{f\left(x^{*}\right)} x^{*}\right\|\right\}
\end{aligned}
$$

and

$$
\left\|\frac{f(x)}{f\left(x^{*}\right)} x^{*}\right\| \leqslant\left\|x^{*}\right\| \cdot \frac{\|f\|}{\left|f\left(x^{*}\right)\right|} \cdot\|x\| .
$$

These inequalities show that

$$
|x|=\max \left\{\left\|x-\frac{f(x)}{f\left(x^{*}\right)} x^{*}\right\|,\left\|\frac{f(x)}{f\left(x^{*}\right)} x^{*}\right\|\right\}=\max \left\{\left\|P_{M}(x)\right\|,\left\|P_{N}(x)\right\|\right\}
$$

is a norm, equivalent to $\|\cdot\|$. Here $P_{M}\left(P_{N}\right)$ denotes the projection operator $P_{M}: X \rightarrow M$, with ker $P_{M}=N\left(P_{N}: X \rightarrow N\right.$, with ker $\left.P_{N}=M\right)$. So, $(X,|\cdot|)$ can be regarded as the direct sum of $(M,\|\cdot\|)$ and $(N,\|\cdot\|)$.

By Theorem 1, all U.R. sets in $(X,|\cdot|)$ are singletons.

Acknowledgment

The author wishes to thank the referee for his valuable remarks.

References

1. V. L. Klee, Convexity of Chebyshev sets, Math. Ann. 142 (1961), 292-304.
2. J. Blatter, Weiteste Punkte und nächste Punkte, Rev. Roumaine Math. Purres et Appl. 14 (1969), 615-621.
3. E. Asplund, Sets with unique farthest points, Israel J. Math. 5 (1967), 201-209.
